Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces.

Identifieur interne : 000129 ( Main/Exploration ); précédent : 000128; suivant : 000130

Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces.

Auteurs : Jinzhong Tian [République populaire de Chine] ; Gaohua Yang [République populaire de Chine] ; Yang Gu [République populaire de Chine] ; Xinqiang Sun [République populaire de Chine] ; Yinhua Lu [République populaire de Chine] ; Weihong Jiang [République populaire de Chine]

Source :

RBID : pubmed:32672817

Descripteurs français

English descriptors

Abstract

Quorum-sensing (QS) mediated dynamic regulation has emerged as an effective strategy for optimizing product titers in microbes. However, these QS-based circuits are often created on heterologous systems and require careful tuning via a tedious testing/optimization process. This hampers their application in industrial microbes. Here, we design a novel QS circuit by directly integrating an endogenous QS system with CRISPRi (named EQCi) in the industrial rapamycin-producing strain Streptomyces rapamycinicus. EQCi combines the advantages of both the QS system and CRISPRi to enable tunable, autonomous, and dynamic regulation of multiple targets simultaneously. Using EQCi, we separately downregulate three key nodes in essential pathways to divert metabolic flux towards rapamycin biosynthesis and significantly increase its titers. Further application of EQCi to simultaneously regulate these three key nodes with fine-tuned repression strength boosts the rapamycin titer by ∼660%, achieving the highest reported titer (1836 ± 191 mg/l). Notably, compared to static engineering strategies, which result in growth arrest and suboptimal rapamycin titers, EQCi-based regulation substantially promotes rapamycin titers without affecting cell growth, indicating that it can achieve a trade-off between essential pathways and product synthesis. Collectively, this study provides a convenient and effective strategy for strain improvement and shows potential for application in other industrial microorganisms.

DOI: 10.1093/nar/gkaa602
PubMed: 32672817
PubMed Central: PMC7430639


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces.</title>
<author>
<name sortKey="Tian, Jinzhong" sort="Tian, Jinzhong" uniqKey="Tian J" first="Jinzhong" last="Tian">Jinzhong Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing 100039, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing 100039</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Gaohua" sort="Yang, Gaohua" uniqKey="Yang G" first="Gaohua" last="Yang">Gaohua Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing 100039, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing 100039</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gu, Yang" sort="Gu, Yang" uniqKey="Gu Y" first="Yang" last="Gu">Yang Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Xinqiang" sort="Sun, Xinqiang" uniqKey="Sun X" first="Xinqiang" last="Sun">Xinqiang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>XinChang Pharmaceutical Factory, Zhejiang medicine LTD, Xinchang 312500, Zhejiang Province, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>XinChang Pharmaceutical Factory, Zhejiang medicine LTD, Xinchang 312500, Zhejiang Province</wicri:regionArea>
<wicri:noRegion>Zhejiang Province</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yinhua" sort="Lu, Yinhua" uniqKey="Lu Y" first="Yinhua" last="Lu">Yinhua Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Shanghai Normal University, Shanghai 200234</wicri:regionArea>
<wicri:noRegion>Shanghai 200234</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Weihong" sort="Jiang, Weihong" uniqKey="Jiang W" first="Weihong" last="Jiang">Weihong Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32672817</idno>
<idno type="pmid">32672817</idno>
<idno type="doi">10.1093/nar/gkaa602</idno>
<idno type="pmc">PMC7430639</idno>
<idno type="wicri:Area/Main/Corpus">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000042</idno>
<idno type="wicri:Area/Main/Curation">000042</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000042</idno>
<idno type="wicri:Area/Main/Exploration">000042</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces.</title>
<author>
<name sortKey="Tian, Jinzhong" sort="Tian, Jinzhong" uniqKey="Tian J" first="Jinzhong" last="Tian">Jinzhong Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing 100039, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing 100039</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Gaohua" sort="Yang, Gaohua" uniqKey="Yang G" first="Gaohua" last="Yang">Gaohua Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing 100039, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing 100039</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gu, Yang" sort="Gu, Yang" uniqKey="Gu Y" first="Yang" last="Gu">Yang Gu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Xinqiang" sort="Sun, Xinqiang" uniqKey="Sun X" first="Xinqiang" last="Sun">Xinqiang Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>XinChang Pharmaceutical Factory, Zhejiang medicine LTD, Xinchang 312500, Zhejiang Province, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>XinChang Pharmaceutical Factory, Zhejiang medicine LTD, Xinchang 312500, Zhejiang Province</wicri:regionArea>
<wicri:noRegion>Zhejiang Province</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Yinhua" sort="Lu, Yinhua" uniqKey="Lu Y" first="Yinhua" last="Lu">Yinhua Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Shanghai Normal University, Shanghai 200234</wicri:regionArea>
<wicri:noRegion>Shanghai 200234</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Weihong" sort="Jiang, Weihong" uniqKey="Jiang W" first="Weihong" last="Jiang">Weihong Jiang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032</wicri:regionArea>
<wicri:noRegion>Shanghai 200032</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>CRISPR-Cas Systems (MeSH)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Industrial Microbiology (methods)</term>
<term>Quorum Sensing (MeSH)</term>
<term>Sirolimus (metabolism)</term>
<term>Streptomyces (genetics)</term>
<term>Streptomyces (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Détection du quorum (MeSH)</term>
<term>Microbiologie industrielle (méthodes)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Sirolimus (métabolisme)</term>
<term>Streptomyces (génétique)</term>
<term>Streptomyces (métabolisme)</term>
<term>Systèmes CRISPR-Cas (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Industrial Microbiology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Sirolimus</term>
<term>Streptomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Microbiologie industrielle</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>CRISPR-Cas Systems</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Quorum Sensing</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Détection du quorum</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Systèmes CRISPR-Cas</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quorum-sensing (QS) mediated dynamic regulation has emerged as an effective strategy for optimizing product titers in microbes. However, these QS-based circuits are often created on heterologous systems and require careful tuning via a tedious testing/optimization process. This hampers their application in industrial microbes. Here, we design a novel QS circuit by directly integrating an endogenous QS system with CRISPRi (named EQCi) in the industrial rapamycin-producing strain Streptomyces rapamycinicus. EQCi combines the advantages of both the QS system and CRISPRi to enable tunable, autonomous, and dynamic regulation of multiple targets simultaneously. Using EQCi, we separately downregulate three key nodes in essential pathways to divert metabolic flux towards rapamycin biosynthesis and significantly increase its titers. Further application of EQCi to simultaneously regulate these three key nodes with fine-tuned repression strength boosts the rapamycin titer by ∼660%, achieving the highest reported titer (1836 ± 191 mg/l). Notably, compared to static engineering strategies, which result in growth arrest and suboptimal rapamycin titers, EQCi-based regulation substantially promotes rapamycin titers without affecting cell growth, indicating that it can achieve a trade-off between essential pathways and product synthesis. Collectively, this study provides a convenient and effective strategy for strain improvement and shows potential for application in other industrial microorganisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32672817</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces.</ArticleTitle>
<Pagination>
<MedlinePgn>8188-8202</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkaa602</ELocationID>
<Abstract>
<AbstractText>Quorum-sensing (QS) mediated dynamic regulation has emerged as an effective strategy for optimizing product titers in microbes. However, these QS-based circuits are often created on heterologous systems and require careful tuning via a tedious testing/optimization process. This hampers their application in industrial microbes. Here, we design a novel QS circuit by directly integrating an endogenous QS system with CRISPRi (named EQCi) in the industrial rapamycin-producing strain Streptomyces rapamycinicus. EQCi combines the advantages of both the QS system and CRISPRi to enable tunable, autonomous, and dynamic regulation of multiple targets simultaneously. Using EQCi, we separately downregulate three key nodes in essential pathways to divert metabolic flux towards rapamycin biosynthesis and significantly increase its titers. Further application of EQCi to simultaneously regulate these three key nodes with fine-tuned repression strength boosts the rapamycin titer by ∼660%, achieving the highest reported titer (1836 ± 191 mg/l). Notably, compared to static engineering strategies, which result in growth arrest and suboptimal rapamycin titers, EQCi-based regulation substantially promotes rapamycin titers without affecting cell growth, indicating that it can achieve a trade-off between essential pathways and product synthesis. Collectively, this study provides a convenient and effective strategy for strain improvement and shows potential for application in other industrial microorganisms.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Jinzhong</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing 100039, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Gaohua</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing 100039, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gu</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Xinqiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>XinChang Pharmaceutical Factory, Zhejiang medicine LTD, Xinchang 312500, Zhejiang Province, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Yinhua</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Weihong</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Organism" UI="C000640059">Streptomyces rapamycinicus</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064113" MajorTopicYN="Y">CRISPR-Cas Systems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="Y">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007218" MajorTopicYN="N">Industrial Microbiology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053038" MajorTopicYN="Y">Quorum Sensing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013302" MajorTopicYN="N">Streptomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32672817</ArticleId>
<ArticleId IdType="pii">5872467</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkaa602</ArticleId>
<ArticleId IdType="pmc">PMC7430639</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2000 May;18(5):533-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Dec 17;116(51):25562-25568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31796590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 May 23;9:1064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29875761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2017 May;44(4-5):537-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27613310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2020 Jan 24;48(2):996-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31799627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 28;152(5):1173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2005 Aug;27(15):1135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Jul 16;3(7):e2724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18628968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2018 Apr 20;7(4):1043-1055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29510026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2016 Feb 19;5(2):116-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26544022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2006 Jun;9(3):287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2017 Aug;46:134-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28365497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2018 Jul;45(7):491-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29380152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jun;44(6):1625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12067349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2018 Jul;45(7):535-543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29380150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2018 Sep;13(9):e1700586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29917318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Synth Syst Biotechnol. 2016 Feb 12;1(2):118-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29062934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Sep;65(9):3793-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10473377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2015 May;29:124-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25792511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug 11;14(9):576-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27510864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2016 Jan;100(1):79-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26521244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jun;97(11):5069-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23604560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4776-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2018 Aug;52:56-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29574344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2018 Sep;13(9):e1800069</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29635744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2018 Sep;13(9):e1800121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29862648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Nov;31(11):1039-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24142050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Mar 25;30(4):354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>3 Biotech. 2014 Oct;4(5):523-531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28324387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2013 Jan;87(1):30-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23106203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Geroscience. 2019 Dec;41(6):861-869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31761958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2002 Oct 01;7:d2045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12165483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2017 Mar;35(3):273-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28191902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23849981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Synth Biol. 2015 Dec 18;4(12):1335-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2015 Jul;30:7-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25908185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2015 Sep;31:35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26142692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Jul;189(13):4756-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1986 Oct;205(1):66-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3025560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2012 Nov;14(6):661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23026120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2017 Feb;44(2):259-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27909940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2964-2969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29507236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Apr;56(2):465-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15813737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Dec;36:205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26453934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2015 Sep;10(9):1360-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25868062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2020 Jan;57:239-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31837400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Nov 15;551(7680):313-320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29144467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2015 May;29:12-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25708513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2019 Oct;59:122-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31063878</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tian, Jinzhong" sort="Tian, Jinzhong" uniqKey="Tian J" first="Jinzhong" last="Tian">Jinzhong Tian</name>
</noRegion>
<name sortKey="Gu, Yang" sort="Gu, Yang" uniqKey="Gu Y" first="Yang" last="Gu">Yang Gu</name>
<name sortKey="Jiang, Weihong" sort="Jiang, Weihong" uniqKey="Jiang W" first="Weihong" last="Jiang">Weihong Jiang</name>
<name sortKey="Lu, Yinhua" sort="Lu, Yinhua" uniqKey="Lu Y" first="Yinhua" last="Lu">Yinhua Lu</name>
<name sortKey="Sun, Xinqiang" sort="Sun, Xinqiang" uniqKey="Sun X" first="Xinqiang" last="Sun">Xinqiang Sun</name>
<name sortKey="Tian, Jinzhong" sort="Tian, Jinzhong" uniqKey="Tian J" first="Jinzhong" last="Tian">Jinzhong Tian</name>
<name sortKey="Yang, Gaohua" sort="Yang, Gaohua" uniqKey="Yang G" first="Gaohua" last="Yang">Gaohua Yang</name>
<name sortKey="Yang, Gaohua" sort="Yang, Gaohua" uniqKey="Yang G" first="Gaohua" last="Yang">Gaohua Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000129 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000129 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32672817
   |texte=   Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32672817" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020